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Abstract—The need to recognize long-term dependencies in sequential data, such as

video streams, hasmade long short-termmemory (LSTM) networks a prominent artificial

intelligencemodel for many emerging applications. However, the high computational and

memory demands of LSTMs introduce challenges in their deployment on latency-critical

systems such as self-driving cars, which are equipped with limited computational

resources on-board. In this article, we introduce a progressive inference computing

scheme that combinesmodel pruning and computation restructuring leading to the best

possible approximation of the result given the available latency budget of the target

application. The proposedmethodology enables mission-critical systems tomake

informed decisions even in early stages of the computation, based on approximate LSTM

inference, meeting their specifications on safety and robustness. Our experiments on a

state-of-the-art driving model for autonomous vehicle navigation demonstrate that the

proposed approach can yield outputs with similar quality of result compared to a faithful

LSTM baseline, up to 415× faster (198× on average, 76× geo. mean).
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& RECURRENT NEURAL NETWORKS (RNNs) are a

family of machine learning models with the abil-

ity to recognize patterns in sequential and tem-

poral data. In the past decade, long short-term

memory (LSTM) networks1 have emerged as the

dominant RNN by setting the state-of-the-art

record in various AI tasks, such as machine

translation and video understanding. Among the

various LSTM-enabled applications, time-con-

strained mission-critical systems2 are rapidly

becoming an ubiquitous scenario. In this setting,

AI agents are equipped with LSTM-based mecha-

nisms of sensing, perceiving and, eventually, act-

ing.3 In such scenarios, making the most

informed decision under a limited time budget is

of vital importance in order to ensure the robust,

safe, and successful operation of the system

within complex and uncertain environments.4

Figure 1 depicts an example of such a latency-

critical system. In this case, a driverless car navi-

gates autonomously in an urban environment

under the control of an LSTM that predicts the

desired throttle/brake position and steering

angle based on the input video sequence. With

the human driver reaction time ranging between

0.7 and 3 s (varying with situation and individual

person),5 autonomous driving systems target a

relevant low-latency envelope to take action

from the moment an event occurs on the road,

in order to preserve the ability of achieving com-

parable reliability with humans. In this respect,

extracting the best possible approximation of

the desired action to be commanded within the

real-time latency constraints is preferred from a

more accurate decision later in time.

From a technical viewpoint, performing the

most informed action under a time budget

reduces to the problem of obtaining the highest

quality output from an LSTM given a constraint in

computation time. Currentmethods for deploying

LSTMs follow the behavior depicted in Figure 2.

Conventional implementations7,8 require the

whole inference computation to finish in order to

obtain meaningful information from the LSTM

and, thus, prolong the sensing-to-action loop with

potentially catastrophic effects. Instead, the strin-

gent latency deadlines of real-life systems call for

progressive inference designs that can provide the

best possible estimate of the final output for a

given time budget and improve on it as more time

budget becomes available (see Figure 2). This

property would enable the agent to exploit the

maximum possible amount of information that is

available in the current input and effectively opti-

mize its overall operation.

From a workload perspective, LSTMs are chal-

lenging by being memory-bound. This property

means that the performance of brute-force imple-

mentations is limited by the available memory

bandwidth of the platform, rather than by the

available computational power. Furthermore, the

excessive memory accesses and the inefficient

use of computational resources when executing

LSTMs on conventional platforms leads to sub-

stantial power inefficiencies, which are critical

for battery-operated systems. To attack this

issue, recent works deviated from general-pur-

pose computing platforms and adopted a model-

hardware codesign approach for the generation of

custom hardware architectures.9

Field-programmable gate arrays (FPGAs) typi-

cally consist of one or more processors and a

reconfigurable fabric. The processor is responsi-

ble for executing noncritical code and coordi-

nates the operation of the overall system. The

reconfigurable fabric can be customized at the

hardware level, allowing the on-chip computa-

tional and memory resource allocation to be opti-

mized to match the particular workload and the

performance needs of the target application and

its underlying implementation. Enabled by the

customization and flexibility of FPGAs, the works

below propose different approximation techni-

ques, focusing onmodel compression,10 quantiza-

tion,11 and pruning,12 together with an associated

Figure 1. Throttle/brake and steering angle

prediction for autonomous driving with an LSTM

model (trained on the dataset in the literature6) relying

on visual inputs.Video &Webpage: www.imperial.ac.

uk/intelligent-digital-systems/approx-lstms/
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FPGA-based hardware accelerator, tailored to the

computational needs of themodel and its approx-

imate computing scheme, to match the computa-

tional demands of LSTMs.

Despite the effectiveness of these methods,

their application requires a retraining step, which

allows the refinement of the model in order to

compensate for any approximation losses in the

model’s accuracy. For the retraining step to

be feasible, availability of the training set is

required, which is not a realistic assumption in

privacy-aware applications,13 as in the case of

large-scale datasets collected by commercial

companies that remain proprietary, or medical-

oriented institutions that are prevented by confi-

dentiality regulations from sharing their clinical

datasets, making privacy-preserving AI techni-

ques increasingly relevant.14–16

In this context, we propose a novel methodol-

ogy for the high-performance (HP) deployment of

LSTMs in time-constrained applications, which is

also complementary to the existing approaches.

The proposed approximate computing scheme is

implemented on custom hardware, also exploit-

ing the customization and flexibility of FPGAs.

The goal is to generate an optimized hardware

mapping of a given LSTM on a target FPGA, tai-

lored to the available time budget and error toler-

ance. To meet the needs of this task, an iterative

scheme is introduced that exploits the resilience

of the target application to approximations in

order to relax the computational and memory

requirements of the given LSTM, and executes

the model under time constraints, with increas-

ing accuracy as a function of the time budget.

In this work, we showcase a significantly

improved computation-time, accuracy, and

power tradeoff presented by our progressive

inference scheme that effectively reduces the

computational workload of a given LSTM model

to meet the desired quality of result (QoR), com-

pared to a baseline implementation of the same

model, while both designs are exploiting the cus-

tomization capabilities of an FPGA. The experi-

mental evaluation of the proposed approach is

conducted on a state-of-the-art driving model for

autonomous vehicles. Self-driving cars, being

tightly coupled with the recent developments in

consumer electronics,17,18 form a representative

example of a system with tight computation time

budget to make mission critical decisions, while

being also constrained in a limited computational

resource environment. At the same time, autono-

mous driving is emerging alongside with the revo-

lution of electric vehicles, imposing a low-power

envelope for the deployment of increasingly com-

pute-hungry models.19 This makes special-pur-

pose FPGA-based hardware architectures the

most prominent solution, offering high computa-

tional efficiency for deployment on resource- and

power-constrained environments.

LEARNING LONG-TERM PATTERNS
WITH LSTMS

LSTMs are specialized RNNs with enhance-

ments that enable the learning of long-termdepen-

dencies. The key feature of an LSTM is a set of

units named gates, which control its behavior at

run time. Figure 3 depicts the structure of an

LSTM. The core element of LSTMs is the cell state

c, shown along the horizontal line at the top of the

diagram. At each time step t, the LSTM removes

or adds information to the cell state via its

gate modules. Computationally, a gate receives as

Figure 2. Concept of progressive inference:

Conventional and target behavior of time-constrained

AI systems. The y-axis metric reflects the application-

level accuracy (higher-is-better). Figure 3. Structure of an LSTM model. gðtÞ

represents each of the LSTM gates (fðtÞ; iðtÞ; cðtÞ; oðtÞ),
while � denotes the elementwise multiplication

between two vectors defined as ða� bÞi ¼ aibi.
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inputs the new input sample xðtÞ and the previous

output hðt�1Þ and performs a matrix–vector multi-

plication with the weight matricesWx andWh, as

described in Figure 3. The elements of the weight

matrices are learned during the training stage of

the target application and remain fixed through-

out the inference stage that takes place upon

deployment.

Next, the resulted vector of the matrix–vector

multiplication is passed through a nonlinear

function, such as a sigmoid sð�Þ, to form gðtÞ. The
nonlinear function operates in an element-by-ele-

ment fashion and outputs a vector with values

between 0 and 1, capturing how much of each

element should be kept. A value of 0 represents

total forgetting of information, 1 represents total

propagation, and intermediate values dictate

what fraction of the information should be kept.

In this manner, by multiplying element-by-ele-

ment another vector yðt�1Þ with the output of the

nonlinear function, a new vector yðtÞ is pro-

duced, which is a filtered version of its previous

state (see Figure 3).

An LSTM consists of four gates. Starting from

the left of the diagram in Figure 3, the forget gate

f ðtÞ determines the amount of information that

will be forgotten from the previous cell state

cðt�1Þ. Next, the input gate iðtÞ and the cell gate

determine the new information to be stored in

the new cell state cðtÞ. The cell gate employs tanh

for its nonlinear function and creates a vector of

new candidate values for the new cell state,

whereas the input gate controls which values of

the current cell state will be updated. At this

point, the new cell state cðtÞ has been formed. The

final step involves the calculation of the new out-

put vector hðtÞ, which is a filtered version of the

cell state. This is generated by passing the cell

state through a tanh nonlinearity and multiplying

the result with the output of the output gate oðtÞ in
order to update only parts of the cell state.

APPROXIMATE COMPUTING
FOR LSTMS

At the core of an LSTM’s workload lies the lin-

ear algebra operation of matrix–vector multipli-

cation, shown on the first line in Figure 3, which

takes place in each of the four gates. Neural net-

works have been extensively studied to have

redundancy in terms of their trained parame-

ters.20 This property allows the restructuring of

the computations of LSTM gates in such a man-

ner that enables us to extract the maximum

information at any time instant. In this respect,

we propose an approximate computing scheme

that enables the tuning of the QoR in exchange

for an increase in performance. The proposed

approach exploits the statistical redundancy of

LSTMs by acting at two levels: 1) approximating

weight matrices with a low-rank singular-value

decomposition (SVD) and 2) pruning the net-

work by sparsifying the weight matrices based

on an importance criterion of their elements.

These techniques enable us to restructure the

computations of an LSTM and design a comput-

ing system that performs the most information-

carrying computations, first, in order to obtain

the peak QoR given a time budget.

Information-Maximizing Approximation

Each LSTM gate consists of two weight matri-

ces corresponding to the current input and pre-

vious output, respectively. In our scheme, we

first concatenate the two weight matrices and

the input and output vectors to obtain a single

augmented matrix and vector, respectively,

for each gate as W ¼ ½WxWh� 2 RR�C and ~xðtÞ ¼
½xðtÞ>hðt�1Þ>�> 2 RC�1. As a next step, we substi-

tute the augmented weight matrix with a low-

rank approximation that reduces the computa-

tion and memory footprint cost while minimizing

the information loss. These properties are satis-

fied by the rank-1 approximation of each weight

matrix based on the SVD. This approach enables

us to approximate the weight matrix as the outer

product of two vectors (the singular vectors) fol-

lowed by an elementwise multiplication with

a constant number (the singular value). For the

ith gate, the rank-1 approximate weight matrix is

given by fWi ¼ si
1u

i
1v

i>
1 . With respect to the

computational cost, the original matrix vector

multiplication fWi~x
ðtÞ is replaced by a dot prod-

uct followed by an elementwise multiplication

between a vector and a constant number, i.e.,

si
1u

i
1ðvi>

1 ~xðtÞÞ, leading to a significant reduction

on both the number of operations and the mem-

ory footprint of the weight matrix, while retain-

ing the highest amount of information that a

rank-1 approximation can have.
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Pruning by Means of Network Sparsification

The second level of approximation on the

LSTM comprises the structured pruning of the

weight matrices at each gate. Pruning can be

interpreted as a type of sparsity in which individ-

ual weights aremasked as zeros. In our structured

pruning scheme, we limit sparsity to the structure

of rows of the weight matrices. This selection of

granularity allows us to always obtain an approxi-

mate value for each element of the resulted out-

put vector, instead of having zeroed values at the

output vector that carry no information. Individ-

ual weight values are set to zero by means of a

magnitude-based criterion, which determines the

importance of a weight using its absolute value.

Overall, the pruning scheme preserves the non-

zero (NZ) elements with the highest absolute

value on each row of each weight matrix. The

value of NZ is tuned to provide the highest possi-

ble application-level accuracy, considering the

user-specified latency budget.

Hybrid Compression and Pruning

To obtain a refinement mechanism that allows

us to increase the QoR as a function of time while

leveraging the advantages of both aforementioned

techniques, we combine them in a hybrid iterative

approximationmethod given by the following:

~yi ¼
XNsteps

n¼1

fsiðnÞ
1 u

iðnÞ
1 ðpruneðviðnÞ

1 ;NZÞ>
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{pruning

~xðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
refinementstep

g:

(1)

The iterative nature of the hybrid method

involves the refinement of the computed output

over a number of iterations, with each refine-

ment step involving the addition of a low-rank

approximation of a correction factor (residual)

together with its pruning. With this scheme,

the final approximate output vector is formed

after applyingNsteps refinement steps. The weight

matrices of each LSTM gate are approximated by

Nsteps vector pairs. At the nth refinement itera-

tion, the value s
iðnÞ
1 and vectors u

iðnÞ
1 and v

iðnÞ
1

capture the rank-1 approximation of a correction

factor. In this manner, at each refinement step,

the current v
iðnÞ
1 vector is pruned using our prun-

ing scheme, in order to end up with NZ elements,

and then is multiplied with the current aug-

mented input vector, resulting to an nonfull

rank-1 approximation. By utilizing the approxi-

mation residual at each time step (R
ðnÞ
i ¼

Wi-fWðn�1Þ
i ) to extract an SVD-based rank-1 cor-

rection factor for the progressive refinement of

the augmented weight–matrix approximation,

the error due to both the SVD and the pruning

are considered in contrast to the case of progres-

sively applying higher-rank approximations of

the original weight matrix, minimizing in this

way the information loss.21 Hence, the workload

of each gate is reduced to Nstepsð2Rþ 2NZ þ 1Þ
operations.

Therefore, in the hybrid method, different

combinations of level of pruning and number of

refinement steps correspond to different candi-

date designs with different computation cost

and QoR. In this respect, the number of NZs and

the number of refinements (Nsteps) form tunable

parameters that are optimized by the proposed

methodology to meet the time constraints and

QoR requirements of the target application.

DOMAIN-SPECIFIC ARCHITECTURE
FOR LSTMS

The philosophy behind the proposed archi-

tecture is to overcome the limitations of pro-

grammable processors by introducing a set of

strategies that exploit the properties of LSTMs.

These include the adoption of dataflow processing

to alleviate the overheads of conventional com-

puting platforms, the exploitation of both the

intergate and intragate parallelism of LSTMs to

boost performance and the compile-time tunable

scaling of the architecture to match the available

resources and the response-time demands of the

target application.

Dataflow Processing

In contrast with the control-flow paradigm

of general-purpose computers where individual

instructions are scheduled for execution, we

adopt a data-driven dataflow architecture. In this

scheme, the availability of input samples triggers

the LSTM processing to be performed on them

without the need for explicit control and synchro-

nization between computation units. From a hard-

ware perspective, this approach allows us to

remove any generic instruction-handling hard-

ware logic and repurpose the resources of the

July/August 2020 15

Authorized licensed use limited to: Samsung R&D Institute UK. Downloaded on June 08,2020 at 09:44:47 UTC from IEEE Xplore.  Restrictions apply. 



FPGA chip specifically for LSTMs. In this way, the

architecture avoids the time, resource, and power

overhead of off-the-shelf platforms and boosts the

attainable performance by dedicating more hard-

ware resources for computation.

Intergate and Intragate Parallelism

Figure 4 shows the block diagram of the archi-

tecture. At its core, the architecture is organized

as a pipeline of five coarse stages, including four

parallel hardware gate units, a set of nonlinear

operators, and a number of multiplier and adder

arrays. Starting on the left-hand side, the four par-

allel hardware gate units are the heart of the

architecture. The proposed design exploits the

coarse-grained, intergate parallelism by mapping

each LSTM gate to a dedicated hardware gate

unit, with all units operating concurrently. At

each LSTM time-step t, a hardware gate unit com-

putes its output by performing Nsteps refinement

iterations. As a first step, the current input vector

is sent from the off-chip memory into an on-chip

buffer, as it will be reused across all refinement

iterations. In the nth iteration, the singular vec-

tors u
iðnÞ
1 and v

iðnÞ
1 for the ith gate are streamed in

from the off-chip memory in a tiled manner with

tile sizes Tr and Tc, respectively, along with the

singular values s
iðnÞ
1 .

Internally, each hardware gate unit contains

three processing modules: a dot-product unit,

a multiplier array, and an adder array (see

Figure 4). By mapping the operations of a gate

to parallel circuits, the architecture capitalizes

on the fine-grained, intragate parallelism of

these operations to obtain performance gains.

After the hardware gate units have applied all

the necessary refinements, the outputs of the

four gates are passed through nonlinear opera-

tors. Consequently, the produced outputs are

processed using the multiplier and adder

arrays to produce the new cell state cðtÞ and

output vector hðtÞ.

Configurable Scaling

At compile time, the configuration of the archi-

tecture is controlled by means of two parameters:

Tr 2 ½1; R� and Tc 2 ½1;NZ�. Tr controls the size of

all the arrays, while Tc determines the number of

multiply–add operators in each hardware gate

unit. Different values of Tr and Tc correspond to

different scaling of the architecture and provide

a tunable performance-resource cost tradeoff,

which is used to customize the design based on

the available resources and the response-time

requirements.

NAVIGATING THE DESIGN SPACE
Given an LSTM and a target FPGA, the parame-

ters of the overall methodology comprise the

approximation method parameters NZ and Nsteps,

and the architectural parameters Tr and Tc. Differ-

ent combinations of these parameters correspond

to alternative designs. For a fixed-time constraint,

each candidate design is characterized by its

1) QoR, 2) performance in terms of processing

speed, and 3) resource consumption. To explore

this space,we need to study the effect of the archi-

tectural parameters on the performance of the

hardware implementation as well as the impact of

the approximations on the QoR of the target

application.

Performance: Following the Roofline

To investigate the attainable performance of

different architectural configurations, we adopt

the roofline model22 from the HP computing com-

munity. The roofline model is a visual model for

identifying the causes of performance bottle-

necks in computing systems. Based on this

model, the performance of a design can be lim-

ited by either the peak processing rate of the tar-

get platform or by the maximum bandwidth that

the external memory subsystem can support.

In this context, we built a roofline model for

the proposed architecture, which can be used to

explore the performance of a large space of alter-

native designs, without the need for long simula-

tions.21 The various candidate designs differ in

terms of number of refinement iterations (Nsteps),

level of pruning (NZ), and scaling of the hardware

(Tr, Tc). Given the pruning level NZ, the number

of refinements Nsteps and a pair of architectural

Figure 4. Custom LSTM accelerator architecture

(see the paper by Rizakis et al.21).
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parameters ðTr; TcÞ, the attainable performance of

the architecture (in GOp/s) can be modeled as

the operation number to the latency ratio for

each LSTM inference.

As the weights of an LSTM do not typically fit

in the on-chip memory of an FPGA, we model

operational intensity, also referred to as the

computation-to-communication ratio (CTC), as

multiplication and addition operations per

byte of weights accessed from the external mem-

ory (GOp/byte). Utilizing the abovementioned

scheme, a design space exploration is conducted

to obtain the highest performing set of parame-

ters for both the approximation method and the

architecture given the target platform.

Level of Approximation Versus Quality of Result

Typically, approximation methods exploit the

error tolerance of an application together with the

perceptual limitations of humans to tradeoff QoR

with faster processing. Nevertheless, emerging

mission-critical systems, such as driverless cars,

place safety and robustness at the forefront and,

hence, require guarantees with respect to both

QoR and processing latency.23 Tomake principled

design decisions that meet the requirements of

such applications, it is essential to capture the

relationship between the application-level QoR

and the level of approximation, and use it to tune

the computing system based on the application

specifications.

To achieve that, we follow the methodology

shown in Figure 5. Initially, the error induced by

the proposed LSTM approximations on an appli-

cation is experimentally measured as a function

of the targeted iterations. Given a (NZ, Nsteps)

pair, the approximate LSTM is generated from

the original LSTM (top to bottom of Figure 5).

Next, we run the target application end-to-end

over a pilot dataset using both the original and

the approximate LSTM. By treating the final out-

put of the original model as the ground truth, an

application-specific metric is employed to assess

the QoR of the approximate LSTM (left to right of

Figure 5). The quality metric measures the simi-

larity between the original and the approximate

result and must have a suitable form based on the

target domain, such as the relative error between

the approximate and reference result or the Kull-

back–Leibler (KL) divergence that captures the

distance between the respective probability dis-

tributions. Overall, by varying the values of (NZ,

Nsteps) and observing the associated QoR, the rela-

tionship between the level of approximation and

the QoR is captured.

CASE STUDY: AUTONOMOUS
DRIVING

Overview

One of the emerging AI-driven applications

with the highest potential for societal impact is

autonomous driving. Although initial efforts began

in the late 1980s,24 the field of autonomous driving

has experienced significant progress in the past

decade, owing to efforts from both the industrial

and academic communities. The main enablers of

the emerging technologies being developed are

1) the advancement of deep learning algorithms

allowing the extraction of powerful representa-

tions, 2) the availability of real-world training data

provided by open-source datasets,6,25 and 3) the

development of embedded processing platforms

with enhanced computational capabilities that

allow the deployment of computationally expen-

sive software on-board the vehicle,9,26 satisfying

the imposed low-latency and safety constraints.

Vision-based driving assistance and auton-

omy,19,27,28 is gaining attention due to the low-

cost, widely available cameras that can be used

independently or accompany other sensors for

environmental perception. With such sensors

providing a stream of measurements, recurrent

models such as LSTMs form a promising learning

paradigm that can extract and exploit temporal

information from the incoming data to develop a

smooth and consistent driving policy, in place of

the independent perinput predictions provided

by classical deep learning models that exploit

solely spatial information.29

Figure 5. Process of capturing the approximation-

QoR tradeoff.
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Self-driving car systems consist of a large set

of computationally demanding tasks, including

sensor preprocessing, localization, mapping,

path planning and obstacle avoidance, and con-

trol and emergency handling.30 Hard low-latency

constraints2 between perception and action

impose the need for HP implementations that

guarantee the extraction of highly accurate

approximations on each individual component,

to meet the real-time performance requirements

of the overall system with insignificant effect on

accuracy. As an example, a coarse but in-time

estimation of the vehicle’s obstacle avoidance

system to take a “sharp” left turn and avoid a

collision is preferred to a delayed but rather

accurate regression of an exact steering angle

response to a visual input.

Target Application

The driving model presented in the paper by

Xu et al.31 trained on the Berkeley DeepDrive

Video dataset, a large-scale crowdsourced driv-

ing video dataset forming an early version of the

BDD100K Dataset,6 is examined as a case study

for evaluating the proposed framework. Similar

to the work of Kim et al.32 on the vision-based

autonomous mobile robot navigation, Xu et al.31

also exploit the end-to-end learning paradigm.

Input frames for each video are first processed

by a fully convolutional network (FCN) to encode

the spatial features, which are then fed to a

trained LSTM model that predicts the probabil-

ity distribution across a discrete set of feasible

future actions for the vehicle (go forward, stop,

turn left, turn right) taking advantage of the tem-

poral motion information from previous repre-

sentations. The LSTM input is enhanced with the

linear and angular velocities of the vehicle pre-

dicted by the system from the previous frame.

This FCN-LSTM architecture is a novel version of

long-term recurrent convolutional networks, typ-

ically consisting of a convolutional neural net-

work (CNN) feeding its output to an LSTM,

combining the current state of the art in visual

and sequence learning to extract spatio-tempo-

ral information for input streams.

Evaluation

In this section, we discuss the extensive

experimental evaluation conducted to showcase

the effectiveness of the proposed approach in

the target application of this case study. The

proposed progressive inference methodology is

initially compared with an FPGA-based baseline

for LSTM inference to demonstrate its efficacy

on making informed predictions under computa-

tion time constraints (see the “Comparison With

FPGA Baseline” section). Then, a comparison of

the proposed methodology with faithful off-the-

self LSTM implementations targeting other com-

puting platforms (CPU and GPU) considering

latency, power consumption, and performance

efficiency is discussed (see the “Comparison

With CPU and GPU Baselines” section).

Experimental Setup

We focus on the LSTM of the examined driving

model for this case study, each gate of which

forms an R� C augmented weight matrix, with

R ¼ 64 and C ¼ 8 320. We evaluate the method on

part of the validation set of the dataset that was

used to train the model, by cropping a segment of

100 consequent frames fromover 1 800 real videos

of diverse driving scenarios. To generate action

probability distributions that will act as ground

truth for the evaluation of the proposed approxi-

mation method, we follow the process in “Level of

Approximation Versus Quality of Result” section

and execute the original driving model end-to-end

over the validation set using TensorFlow. As a

metric of the effect of low-rank approximation and

pruning on the QoR, we employ KL divergence—a

commonly used metric of dissimilarity between

distributions—between the reference and pre-

dicted probability distribution.

In our experiments, we target the Xilinx’s

ZC706 board mounting the Zynq 7045 chip. This

platform is an industry standard for FPGA-based

embedded systems and is based on the Zynq-

7000 System-on-Chip, which integrates a dual-

core Arm CPU alongside an FPGA fabric on the

same chip. For the data format, we use single-

precision floating-point representation to com-

ply with the typical precision requirements of

LSTMs as used by the deep learning community.

All hardware designs are synthesized with

Vivado HLS and Vivado Design Suite (v2017.1)

achieving a clock frequency of 100 MHz.

The core LSTM workload of the proposed

approximate computing scheme (dot-product
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followed by a vector scaling by a constant), as

well as the baseline LSTM implementation in the

“Comparison With FPGA Baseline” section

(matrix–vector multiplication), is implemented on

the FPGA. At the same time, the CPU coordinates

the operation of the system by 1) scheduling the

computations between different tiles from all four

LSTM gates and mapping them to the available

processing elements of the custom hardware

accelerator, and 2) setting up the communication

interface between the accelerator and the external

memory. To this end, we use the four AXI-based

HP ports that are available on the target device.

For each port, we configure it with a 64-bit width

and instantiate a dedicated DMA engine, clocked

at 150 MHz, to independently perform the mem-

ory transfers. Overall, our memory interface sub-

system yields a measured bandwidth of around

4 GB/s, as shown on the slope of the roofline

model in Figure 6, with the CPU initializing the

DMAengines state prior to execution.

In the comparison of the proposed metho-

dology with a CPU- and GPU-based LSTM imple-

mentation (see the “Comparison With CPU and

GPU Baselines” section), we used PyTorch

(v1.1.0) with CUDA 10, to develop a faithful LSTM

baseline and deploy it on the widely used NVIDIA

Jetson AGX Xavier board (which was also pre-

sented at the 2017 Consumer Electronics Show,18)

featuring an 8-core Arm 64-bit CPU along with a

512-core Volta GPU. Average performance and

power are calculated after completing 1 000 itera-

tions of each experiment across all platforms. The

idle power is subtracted from all measurements,

leading to a comparison of the actual power con-

sumed by the benchmark execution (including

thememory accesses).

Comparison With FPGA Baseline A hard-

ware architecture implementing a faithful map-

ping of the original LSTM model described in

“Learning Long-Term Patterns With LSTMS” sec-

tion is developed to act as a baseline for the eval-

uation of the proposed system. This baseline

architecture consists of four gate units with a

total of 2.1M parameters, implemented in paral-

lel hardware that performs the matrix–vector

multiplication operations of LSTM gates (see

Figure 3) in a blocked manner. The computa-

tional workload for the kernel of each gate is

2RC operations. Parametrization with respect to

the tiling along the rows (TrÞ and columns (Tc) of

the weight matrices is applied and roofline

modeling is used to obtain the highest perform-

ing configuration (Tr, Tc), similarly to the pro-

posed system’s architecture (see Figure 6). As

Figure 6 demonstrates, the designs are mainly

memory-bound, and as a result a small portion

of the FPGA resources are utilized. To obtain the

application-level QoR of the baseline design

under time-constrained scenarios, the KL diver-

gence between the intermediate LSTM output at

each tile step of Tr and the predictions of the ref-

erence model is examined and illustrated by the

black line of Figure 7(b).

The gains of the proposed methodology com-

pared to the baseline design under computation-

time constraints are investigated by exploring

the design space, defined by (NZ, Tr, Tc), in terms

of 1) performance (see Figure 6) and 2) the rela-

tionship between error (described by the KL-

divergence between the approximate prediction

and ground truth) and computation time [see

Figure 7(b)]. Figure 7(a) also depicts the relation-

ship between error and computation step for

numerous configurations of the proposed sys-

tem. As illustrated, the QoR of a configuration is

inversely proportional to its level of sparsity.

Dense configurations, such as those with 50% NZ

elements or more, tend to converge to negligible

divergence values (below 10�6) in less than

15 computation steps, in contrast with sparser

configurations that require more than 75 compu-

tations steps to converge to the same divergence

level (�2% NZ elements) or converge to higher

divergence values (as in the case of 0.4% NZ ele-

ments). Additionally, Figure 8 presents probabil-

ity distribution instance samples of numerous

Figure 6. Roofline model analysis for the baseline

architecture and various configurations of the

proposed method.
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progressive refinement steps for a representa-

tive input frame along with their corresponding

KL-divergence values. It can be seen that the

proposed approach converges to “meaningful

results” (application-wise) in much smaller num-

ber of computation steps, by exploiting the

inherent redundancy of the LSTM model.

As shown in Figure 7(b), since computation

time per computation step is also inversely pro-

portional to the level of sparsity of a given config-

uration, some sparse configurations demonstrate

superior accuracy than other denser settings

under the same latency constraint. This behavior,

however, is not monotonic due to extremely

dense configurations requiring a larger number of

computation steps to converge. Therefore, the

selection of the appropriate level of sparsity is

dependent on the latency constraint imposed by

the application-level needs. Overall, we notice

that the proposed methodology achieves a

speed-up of 198× on average (76× geo. mean)

across different QoR levels compared to the base-

line approach. In particular, when only negligible

KL-divergence is allowed between the approxi-

mate and reference prediction, the proposed sys-

tem achieves 2.93× faster inference by exploiting

the LSTM model’s inherent redundancy. Further-

more, the proposed method demonstrates up to

415× lower inference time to achieve an interme-

diate QoR prediction exploiting the computation

time-accuracy tradeoff. Figure 9 illustrates two

representative intermediate probability distribu-

tions extracted by an instance of the proposed

approach and the baseline, both satisfying the

same latency constraint. To obtain these outputs,

both methods were fed with the same input, and

while calculating their predictions their computa-

tion was cut short as the available time budget

was hit. The illustrated intermediate output distri-

butions indicate that the proposed approach

makes a more informed prediction, significantly

closer to the ground truth compared to the base-

line. This property is particularly useful in scenar-

ios where tight real-time requirements impose

hard latency constraints on the available compu-

tation time budget for inference.

Comparison With CPU and GPU Baselines

Targeting the efficient deployment on the embed-

ded space, deep-learning models should abide in

a low-power envelope. Power efficiency becomes

increasingly prominent in the case of autono-

mous systems19 that rely on self-contained power

supply resources, and especially in self-driving

cars that are emerging alongside with the rise of

the electric vehicle era. Power-constrained appli-

cations are primarily concerned about 1) the

absolute power consumption (watts) and 2) the

performance efficiency (performance-per-watt).

In this respect, we also compare multiple

instances of the proposed methodology and its

underlying FPGA-based hardware implementation

with highly optimized off-the-shelf CPU- and GPU-

based traditional implementations of LSTM infer-

ence, commonly used by the deep learning com-

munity, in terms of raw performance, absolute

power consumption, and performance efficiency.

Figure 7. KL-divergence between approximate

prediction and reference model output (lower-is-

better) as a function of (a) computation step and

(b) computation time.
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Although raw performance and power consump-

tion are also reported, the most equitable metric

for cross-platform comparison is power effi-

ciency, as it effectively normalizes the results

with respect to the available computational

resources of each target platform.

Table 1 summarizes the results of this com-

parison. The employed FPGA baseline achieves a

2.28× speed-up compared to the CPU implementa-

tion, while suffering a 0.75× slow-down with

respect to the GPU, in terms of absolute latency.

However, when power consumption is also con-

sidered, these results are translated into a 4.31×

and 1.96× improvement on performance effi-

ciency compared to the CPU and GPU baseline,

respectively. These demonstrated gains in power

efficiency achieved by the use of a custom FPGA-

based solution render FPGAs as the cardinal plat-

form for LSTM deployment in many power-con-

strained applications, especially in the embedded

space of autonomous systems.

Multiple instances of the proposed approxi-

mate computing scheme are also listed in Table 1.

It can be seen that by utilizing solely the pro-

posed computation-restructuring methodology,

a speed-up of 6.7×, 2.2×, and 2.93× is achieved in

the latency required to yield (almost) identical

outputs (KL-divergence � 0:001) with the refer-

ence design, compared to the CPU, GPU, and

FPGA baselines accordingly, also translated into

an improvement of 12.46×, 5.67×, and 2.89× in per-

formance efficiency. These significant gains arise

by the proposed methodology exploiting the

inherent redundancy of LSTM models in order to

maximize the achievable accuracy at every stage

of the computation. By performing themost infor-

mation-carrying computations first, the workload

(and computation time) required to reach similar

accuracy with the baseline is effectively reduced.

By relaxing the error tolerance into slightly

higher KL-divergence values (�0:1), the proposed

hybrid compression-and-pruning methodology

provides informed approximations of the infer-

ence outputs, while demonstrating remarkable

performance gains of up to 724×, 238�; and 317×

in latency (1 161×, 529�; and 269× improved per-

formance efficiency) compared to the same CPU,

GPU, and FPGA baselines, respectively. These

gains are amplified remarkably by further relaxing

the error tolerance into higher KL-divergence

(�1:0), which, however, still yield “meaningful”

results.

Figure 9. Intermediate prediction instances

obtained by the baseline and the proposed

approach with NZ = 4 160 on the same data sample,

under the same latency constraint (t = 10�1 ms).

Figure 8. Intermediate prediction instances obtained by the progressive inference baseline (achieving

16:6�2 ms/step) and a dense instance of the proposed SVD-based approach (achieving 15:9�2 ms/step) on

the same data sample, as a function of computation steps. KL-divergence values with respect to the final

result are also shown (grey row).
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Since all the configurations of the proposed

(and baseline) approach are memory bounded

(see Figure 6), the attainable parallelism and per-

formance (GOp/s) of the underlying hardware

architecture increase proportionally to the

selected sparsity level. As it can be noticed in

Table 1, the absolute power consumption of

sparser configurations increases. This is due to

the fact that since sparser configurations lead to

the higher CTC ratio (see Figure 6), more parallel

processing can be exploited in this case, by

instantiatingmore on-chip computational resour-

ces on the FPGA. Consequently, although proc-

essing becomes faster, the absolute power of the

accelerator also increases as a result of the on-

chip power consumption.

Exploiting the computation time-accuracy

tradeoff, the proposed progressive inference

methodology can provide high-quality approxi-

mations of the final result at early stages of the

computation, which are iteratively refined as

more time budget becomes available. This

scheme is particularly useful for systems with

hard computation-time constraints (e.g., in mis-

sion-critical real-time applications), enabling

them to maximize the attainable QoR within the

given latency envelope. Furthermore, the intro-

duced highly parametrized custom hardware

architecture for the proposed methodology dem-

onstrates remarkable power efficiency by exploit-

ing the enhanced customization capabilities and

flexibility of FPGAs. In this manner, highly opti-

mized hardware mappings of different configura-

tion instances of the proposed approximation

scheme are generated, while being tailored to the

needs of the target application.

RELATED WORK

The rapid advances in deep learning have led

to significant research effort invested in optimiz-

ing the execution of deep neural networks. The

majority of existing work has focused on com-

pute-intensive CNNs for computer vision tasks.

The substantial redundancy of modern deep

CNNs together with the inherent parallelism and

data-reuse of CNN workloads have made them

amenable to various compression and accelera-

tion techniques. At the algorithmic level, methods

such as knowledge distillation,33 efficient convolu-

tions,34 and neural architecture search35 have

been successfully applied to significantly com-

press CNN models by leveraging their high inher-

ent redundancy. At the same time, techniques

such as reduced precision15,36 and custom hard-

ware designs37 have been employed for accelera-

tion by exploiting the high levels of parallelism

and data reuse of CNNs. Nevertheless, with mem-

ory-bound LSTMs having substantially different

computational patterns, the CNN-centricmethods

and accelerator designs either provide minimal

gains or are not directly applicable to LSTMs.38,39

Closer to the progressive inference philoso-

phy of our approach lie CNNs that employ early-

exit classifiers. CNNs with early exits40–42 provide

a run-time accuracy-latency tradeoff and are able

to produce an increasingly refined output as a

function of time, which casts them suitable for

time-constrained inference scenarios. However,

as the early-exit classifiers have to be trained,

access to the training set is necessary and

complex hyperparameter tuning is required.41,42

Furthermore, although early exiting has been

applied to CNN-based classifiers with promising

results, this mechanism is not directly applicable

to the substantially different topology of LSTMs.

Alternatively, our method enables us to perform

progressive inference using LSTM models with-

out the need to access the training set and the

excessive time overhead of tuning the associated

hyperparameters.

With a focus on LSTM workloads, several

works have proposed optimizations for executing

LSTMs on conventional programmable platforms

such as CPUs43 and GPUs.38,44,45 By employing

tailor-made caching and data-locality strategies,

this line of work has demonstrated significant

performance gains and has approached the

Table 1. Comparison with other computing platforms.

Platform Benchmark Latency Power Perf. Efficiency

CPU Baseline 2.4266 ms 5.13 W 0.342 GOp/s/W

GPU Baseline 0.7974 ms 7.11 W 0.752 GOp/s/W

FPGA Baseline 1.0620 ms 2.72 W 1.476 GOp/s/W

FPGA y	 (KL � 0:001) 0.36190 ms 2.76 W 4.267 GOp/s/W

FPGA y		 (KL � 0:01) 0.03924 ms 3.20 W 33.943 GOp/s/W

FPGA y		 (KL � 0:1) 0.00335 ms 3.20 W 397.713 GOp/s/W

FPGA y			 (KL � 1:0) 0.00072 ms 3.41 W 1 735.992 GOp/s/W

y This work, 	SVD-4160NZ (no pruning), 		SVD-130NZ, 			SVD-32NZ
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performance limits of commodity programmable

hardware architectures. To push further the

attainable performance of LSTMs, another line of

work has exploited the characteristics of FPGAs

to propose custom accelerator designs. Based on

the stage where optimizations are applied, FPGA-

based LSTM designs can be categorized into

1) posttraining with fine-tuning, 2) training-stage,

and 3) run-timemethods.

Posttraining Methods With Fine-Tuning By

putting emphasis on minimizing the effect of

memory boundedness of LSTM workloads, ESE10

proposes to sparsify LSTMs via a pruning scheme

and map it on an FPGA-based accelerator tailored

for sparse workloads. Given a pretrained model,

its weights are pruned in an iterative manner

using a load-balance-aware strategy that aims to

sustain the utilization of the accelerator high.

Furthermore, to avoid excessive accuracy drop,

at each iteration, the unpruned weights are fine-

tuned using the training set. To overcome the

inefficiencies of CPUs and GPUs when executing

the sparse, pruned model, ESE exploits the cus-

tomizability of FPGAs to propose an accelerator

optimized for sparse computations. As a result,

the load-balance-aware pruning leads to 6.2×

faster execution over dense LSTMs on ESE’s

accelerator. To further improve the load balanc-

ing, Park et al.46 proposed an alternative encod-

ing format for storing sparse matrices and

managed to achieve higher sustained utilization

of the PEs on the same accelerator.

Overall, despite the fact that the pruning

method used by both ESE and Part et al.46 is

applied posttraining on pretrained LSTMs, access

to the training set is required in order to itera-

tively prune and fine-tune the model’s weights

and, thus, not significantly degrade the accu-

racy. In contrast, our method is also applied

posttraining on pretrained models, but it does

not require access to the dataset and, hence, is

suitable for privacy-aware cases.

Training-Stage Methods By modifying the

model design process, Wang et al.11 proposed a

compression technique that modifies the LSTM

model before the training stage. By applying

a circulant structure to the matrices within

each LSTM gate, this approach allows the same

weights to be shared across several neurons and

substantially reduces the model size and storage

requirements. Further parametrizing this tech-

nique, the E-RNN47 framework introduces a

blocking version of circulant matrices and treats

the block size as a tunable parameter to balance

the processing speed and accuracy. The block-

circulant matrix operations were executed in the

frequency domain to leverage the computational

efficiency of FFT. At the hardware level, to

bypass the limitations of conventional platforms

when executing irregular computations, E-RNN

proposed a highly parametrized custom hard-

ware architecture mapped on the flexible FPGA

fabrics, leading to a 7.7× speed-up over ESE.10

In contrast with our posttraining approach,

both of these methods are applied at the LSTM

model level and intervene substantially with the

LSTM model design and training. Nevertheless,

since the SVD-based decomposition of our work

is applicable to circulant matrices, our scheme

is orthogonal to these works and can be applied

in a complementary manner to yield further per-

formance improvements.

Run-Time Methods This class of methods

exploits techniques to dynamically skip unneces-

sary computations during the execution of an

LSTM. In this context, DeltaRNN48 employs a strat-

egy to dynamically avoid computations based on

the estimated impact on the output of the net-

work. The skipping criterion is based on the

degree of change of each input activation. To

effectively implement this technique without sig-

nificantly dropping the accuracy, the target LSTM

has to be trained using the Delta Network

scheme.49 From a hardware perspective, to over-

come the inefficiency of GPUs due to the condi-

tional execution strategy, the DeltaRNN-trained

LSTM is mapped on a custom accelerator design,

which exploits the reconfigurability of FPGAs to

efficiently perform the dynamic computations.

Nevertheless, despite the run-time computation-

skipping, DeltaRNN requires the target model to

be trained using the Delta Network algorithm and,

hence, is limited to settings where the training set

is available, while requiring substantial modifica-

tion of the training scheme and tuning of the

hyperparameters. In contrast to this, our method

avoids the time overhead and engineering effort
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of training and parameter tuning and can be

directly applied to pretrained LSTMs.

Among the existing designs, reduced arithme-

tic precision schemes have also been used to

obtain gains in terms of performance and power

efficiency. ESE10 and E-RNN47 employ 12-bit fixed-

point precision for both weights and activations.

However, to avoid the severe degradation of accu-

racy due to the limited numerical precision, a fine-

tuning step is required by means of additional

training iterations. Alternatively, DeltaRNN48

avoids fine-tuning and employs a 16-bit fixed-

point representation. Nonetheless, DeltaRNN’s

quantization is not network-agnostic but hand-

tuned to minimize the accuracy losses of the tar-

get network. In our work, 32-bit single-precision

floating-point format is used to avoid the need for

fine-tuning and limit the sources of QoR degrada-

tion to our approximate computing techniques.

Nevertheless, our method is orthogonal and inde-

pendent of employed numerical precision and,

thus, can be combined with existing quantization

schemes to further boost both performance and

power efficiency.

CONCLUSION
The deployment of LSTMs in latency-critical

applications is a challenging task due to their

high computational requirements. In this article,

an iterative approximate computing method

together with an FPGA-based architecture are

introduced combining model pruning with com-

putation restructuring to make approximate but

informed LSTM predictions in time-constrained

environments. In a self-driving car scenario,

the proposed system demonstrates significant

improvements in accuracy for every given com-

putation time budget compared to a baseline that

follows conventional implementations.

It is noteworthy that the proposed approxima-

tion methodology effectively reduces the work-

load required to achieve a desired QoR for a

given model, and therefore, it can be decoupled

from the proposed custom-hardware implemen-

tation and adapted for deployment on other com-

puting platforms with variable performance

gains. Future work encompasses an investigation

of ways to adapt the proposed methodology for

efficient deployment on other platforms.
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